Abstract
AbstractTaylor–Couette flow with independently rotating inner ($i$) and outer ($o$) cylinders is explored numerically and experimentally to determine the effects of the radius ratio $\eta $ on the system response. Numerical simulations reach Reynolds numbers of up to $\mathit{Re}_i=9.5\times 10^3$ and $\mathit{Re}_o=5\times 10^3$, corresponding to Taylor numbers of up to $\mathit{Ta}=10^8$ for four different radius ratios $\eta =r_i/r_o$ between 0.5 and 0.909. The experiments, performed in the Twente Turbulent Taylor–Couette ($\mathrm{T^3C}$) set-up, reach Reynolds numbers of up to $\mathit{Re}_i=2\times 10^6$ and $\mathit{Re}_o=1.5\times 10^6$, corresponding to $\mathit{Ta}=5\times 10^{12}$ for $\eta =0.714\mbox{--}0.909$. Effective scaling laws for the torque $J^{\omega }(\mathit{Ta})$ are found, which for sufficiently large driving $\mathit{Ta}$ are independent of the radius ratio $\eta $. As previously reported for $\eta =0.714$, optimum transport at a non-zero Rossby number $\mathit{Ro}=r_i |\omega _i-\omega _o |/[2(r_o-r_i)\omega _o]$ is found in both experiments and numerics. Here $\mathit{Ro}_{opt}$ is found to depend on the radius ratio and the driving of the system. At a driving in the range between $\mathit{Ta}\sim 3\times 10^{8}$ and $\mathit{Ta}\sim 10^{10}$, $\mathit{Ro}_{opt}$ saturates to an asymptotic $\eta $-dependent value. Theoretical predictions for the asymptotic value of $\mathit{Ro}_{opt}$ are compared to the experimental results, and found to differ notably. Furthermore, the local angular velocity profiles from experiments and numerics are compared, and a link between a flat bulk profile and optimum transport for all radius ratios is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.