Abstract
We characterize the optimal linear tax on capital in an Overlapping Generations model with two period lived households facing uninsurable idiosyncratic labor income risk. The Ramsey government internalizes the general equilibrium feedback of private precautionary saving. For logarithmic utility our full analytical solution of the Ramsey problem shows that the optimal aggregate saving rate is independent of income risk. The optimal time-invariant tax on capital is increasing in income risk. Its sign depends on the extent of risk and on the Pareto weight of future generations. If the Ramsey tax rate that maximizes steady state utility is positive, then implementing this tax rate permanently generates a Pareto-improving transition even if the initial equilibrium is dynamically efficient. We generalize our results to Epstein-Zin-Weil utility and show that the optimal steady state saving rate is increasing in income risk if and only if the intertemporal elasticity of substitution is smaller than 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.