Abstract

Deciding whether a modal formula is satisfiable with respect to a given set of (global) assumptions is a question of fundamental importance in applications of logic in computer science. Tableau methods have proved extremely versatile for solving this problem for many different individual logics but they typically do not meet the known complexity bounds for the logics in question. Recently, it has been shown that optimality can be obtained for some logics while retaining practicality by using a technique called “global caching”. Here, we show that global caching is applicable to all logics that can be equipped with coalgebraic semantics, for example, classical modal logic, graded modal logic, probabilistic modal logic and coalition logic. In particular, the coalgebraic approach also covers logics that combine these various features. We thus show that global caching is a widely applicable technique and also provide foundations for optimal tableau algorithms that uniformly apply to a large class of modal logics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.