Abstract

Every compact orientable boundaryless surface M can be cut along simple loops with a common point v0, pairwise disjoint except at v0, so that the resulting surface is a topological disk; such a set of loops is called a {\it system of loops} for M. The resulting disk may be viewed as a polygon in which the sides are pairwise identified on the surface; it is called a polygonal schema. Assuming that M is a combinatorial surface, and that each edge has a given length, we are interested in a shortest (or optimal) system of loops homotopic to a given one, drawn on the vertex-edge graph of M. We prove that each loop of such an optimal system is a shortest loop among all simple loops in its homotopy class. We give an algorithm to build such a system, which has polynomial running time if the lengths of the edges are uniform. As a byproduct, we get an algorithm with the same running time to compute a shortest simple loop homotopic to a given simple loop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call