Abstract

Abstract The optimal design of a compression refrigeration system (CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineering. In this paper, a general methodology for the optimal synthesis of the CRS, which simultaneously integrates CRS and Heat Exchanger Networks (HEN) to minimize the total compressor shaft work consumption based on an MINLP model, has been proposed. The major contribution of this method is in addressing the optimal design of refrigeration cycle with variable refrigeration temperature levels. The method can be used to make major decisions in the CRS design, such as the number of levels, temperature levels, and heat transfer duties. The performance of the developed methodology has been illustrated with a case study of an ethylene CRS in an industrial ethylene plant, and the optimal solution has been examined by rigorous simulations in Aspen Plus to verify its feasibility and consistency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.