Abstract

Thermodynamic, heat transfer and economic concepts influencing the synthesis of a heat-exchanger network (HEN) coupled to a crude fractionation unit are examined. The impact of the variation of the minimum temperature approach (Δtmin) on energy and capital targets is studied using recent developments in pinch technology. The optimal pinch approach temperature has been determined using the ‘supertargeting’ concept where proper trade-off between energy and capital targets is observed prior to design. A heuristic evolutionary approach has then been used for the generation of the optimal HEN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.