Abstract

Pulse discharge method was used in liquid phase to prepare nickel phosphide nanoparticles. The size and morphology of the as-prepared nanoparticles were found to be easily controlled through changing reaction parameters such as temperature, reactants concentration, reactants molar ratio, pulse discharge number, and pulse discharge voltage. The optimal reaction parameters have been obtained by single-factor experiments. X-ray diffraction, X-ray absorption fine structure spectra, Field Emission Scanning Electron Microscope, and Energy Dispersive X-ray Spectrum were used to characterize the as-prepared Ni–P nanoparticles. Vibrating Sample Magnetometer was used as magnetic measurements of the Ni–P nanoparticles. The results demonstrate that the as-prepared Ni–P nanoparticles are in amorphous phase, and consist of Ni and P elements. The P-content in the as-prepared Ni–P nanoparticles increases with the increasing of Ni–P particle size, and is independent on the initial concentration of P-concentration in the reaction solution. The Ni–P nanoparticles have totally about 12 near-neighbors of Ni–Ni and Ni–P around center Ni. The Ni–Ni distance increases with the increasing particle size. The as-prepared Ni–P nanoparticles present paramagnetic nature. Their saturated magnetizations are also size-dependent. The larger Ni–P particles has lower saturated magnetization, which can be attributed to the entrance of P into Ni lattice, causing a larger Ni–Ni separation and a looser, distorted local atomic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.