Abstract

In this paper, the optimal synchronization controller design problem for complex dynamical networks with unknown system internal dynamics is studied. A necessary and sufficient condition on the existence of the optimal control minimizing a quadratic performance index is given. The optimal control law consists of a feedback control and a compensated feedforward control, and the feedback control gain can be obtained by solving the well-known Algebraic Riccati Equation (ARE). Especially, in the presence of unknown system dynamics, a novel adaptive iterative algorithm using the information of system states and inputs is proposed to solve the ARE to get the optimal feedback control gain. Finally, a simulation example shows the effectiveness of the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call