Abstract

We address a general optimal switching problem over finite horizon for a stochastic system described by a differential equation driven by Brownian motion. The main novelty is the fact that we allow for infinitely many modes (or regimes, i.e. the possible values of the piecewise-constant control process). We allow all the given coefficients in the model to be path-dependent, that is, their value at any time depends on the past trajectory of the controlled system. The main aim is to introduce a suitable (scalar) backward stochastic differential equation (BSDE), with a constraint on the martingale part, that allows to give a probabilistic representation of the value function of the given problem. This is achieved by randomization of control, i.e. by introducing an auxiliary optimization problem which has the same value as the starting optimal switching problem and for which the desired BSDE representation is obtained. In comparison with the existing literature we do not rely on a system of reflected BSDE nor can we use the associated Hamilton–Jacobi–Bellman equation in our non-Markovian framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.