Abstract

We study the “Up the River” problem formulated by Aldous (2002), where a unit drift is distributed among a finite collection of Brownian particles on $\mathbb{R}_{+}$, which are annihilated once they reach the origin. Starting $K$ particles at $x=1$, we prove Aldous’ conjecture [Aldous (2002)] that the “push-the-laggard” strategy of distributing the drift asymptotically (as $K\to\infty$) maximizes the total number of surviving particles, with approximately $\frac{4}{\sqrt{\pi}}\sqrt{K}$ surviving particles. We further establish the hydrodynamic limit of the particle density, in terms of a two-phase partial differential equation (PDE) with a moving boundary, by utilizing certain integral identities and coupling techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.