Abstract

Iterative stochastic approximation methods are widely used to solve M-estimation problems, in the context of predictive learning in particular. In certain situations that shall be undoubtedly more and more common in the Big Data era, the datasets available are so massive that computing statistics over the full sample is hardly feasible, if not unfeasible. A natural and popular approach to gradient descent in this context consists in substituting the “full data” statistics with their counterparts based on subsamples picked at random of manageable size. It is the main purpose of this paper to investigate the impact of survey sampling with unequal inclusion probabilities on stochastic gradient descent-based M-estimation methods. Precisely, we prove that, in presence of some a priori information, one may significantly increase statistical accuracy in terms of limit variance, when choosing appropriate first order inclusion probabilities. These results are described by asymptotic theorems and are also supported by illustrative numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.