Abstract

Sensor deployment is a fundamental issue in a wireless sensor network, which often dictates the overall network performance. Previous studies on sensor deployment mainly focused on sensor networks on 2D plane or in 3D volume. In this paper, we tackle the problem of optimal sensor deployment on 3D surfaces, aiming to achieve the highest overall sensing quality. In general, the reading of a sensor node exhibits unreliability, which often depends on the distance between the sensor and the target to be sensed, as observed in a wide range of applications. Therefore, with a given set of sensors, a sensor network offers different accuracy in data acquisition when the sensors are deployed in different ways in the Field of Interest (FoI). We formulate this optimal surface deployment problem in terms of sensing quality by introducing a general function to measure the unreliability of monitored data in the entire sensor network. We present its optimal solution and propose a series of algorithms for practical implementation. Extensive simulations are conducted on various 3D mountain surface models to demonstrate the effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.