Abstract

Optimum sun-alignment of large solar arrays in electric propulsion spacecraft operating in earth orbit requires periodic roll motions around the thrust axis, synchronized with the apparent conical motion of the sun line. This oscillation is sustained effectively with the aid of gravity gradient torques while only a small share of the total torque is being contributed by the attitude control system. Tuning the system for resonance requires an appropriate choice of moment-of-inertia characteristics. To minimize atmospheric drag at low orbital altitudes the solar array is oriented parallel, or nearly parallel, to the flight direction. This can increase the thrust-to-drag ratio by as much as an order of magnitude. Coupled with optimal roll orientation, this feathering technique will permit use of electric propulsion effectively at low altitudes in support of space shuttle or space station activities and in spiral ascent missions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call