Abstract
We consider a class of optimal stopping problems where the ability to stop depends on an exogenous Poisson signal process - we can only stop at the Poisson jump times. Even though the time variable in these problems has a discrete aspect, a variational inequality can be obtained by considering an underlying continuous-time structure. Depending on whether stopping is allowed att= 0, the value function exhibits different properties across the optimal exercise boundary. Indeed, the value function is only𝒞0across the optimal boundary when stopping is allowed att= 0 and𝒞2otherwise, both contradicting the usual𝒞1smoothness that is necessary and sufficient for the application of the principle of smooth fit. Also discussed is an equivalent stochastic control formulation for these stopping problems. Finally, we derive the asymptotic behaviour of the value functions and optimal exercise boundaries as the intensity of the Poisson process goes to infinity or, roughly speaking, as the problems converge to the classical continuous-time optimal stopping problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.