Abstract

For i.i.d. random variables in the domain of attraction of a max-stable distribution with discount and observation costs we determine asymptotic approximations of the optimal stopping values and asymptotically optimal stopping times. The results are based on Poisson approximation of related embedded planar point processes. The optimal stopping problem for the limiting Poisson point processes can be reduced to differential equations for the boundaries. In several cases we obtain numerical solutions of the differential equations. In some cases the analysis allows us to obtain explicit optimal stopping values. This approach thus leads to approximate solutions of the optimal stopping problem of discrete time sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.