Abstract

Two optimal stopping problems for geometric random walks with the observer’s power payoff function, on the finite and infinite horizons, are solved. For these problems, an explicit form of the cut value and also optimal stopping rules are established. It is proved that the optimal stopping rules are nonrandomized thresholds and describe the corresponding free boundary. An explicit form of the free boundary is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.