Abstract

Optimal stopping of a sequence of random variables is studied, with emphasis on generalized objectives which may be non-monotone functions of EXt, where t is a stopping time, or may even depend on the entire vector (E[X1I{t=l}], · ··, E[XnI{t=n}]), such as the minimax objective to maximize minj{E[XjI{t=j}]}. Convexity is used to establish a prophet inequality and universal bounds for the optimal return, and a method for constructing optimal stopping times for such objectives is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.