Abstract

The purpose of this paper is to study the optimal stopping problem of conditional McKean–Vlasov (mean-field) stochastic differential equations with jumps (conditional McKean–Vlasov jump diffusions, for short). We obtain sufficient variational inequalities for a function to be the value function of such a problem and for a stopping time to be optimal.The key is that we combine the conditional McKean–Vlasov equation with the associated stochastic Fokker–Planck partial integro-differential equation for the conditional law of the state. This leads to a Markovian system which can be handled by using a version of a Dynkin formula.Our verification result is illustrated by finding the optimal time to sell in a market with common noise and jumps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.