Abstract

We consider the optimal stochastic scheduling of a two-stage tandem queue with two parallel servers. The servers can serve either queue at any point in time and the objective is to minimize the total holding costs incurred until all jobs leave the system. We characterize sufficient and necessary conditions under which it is optimal to allocate both servers to the upstream or downstream queue. We then conduct a numerical study to investigate whether the results shown for the static case also hold for the dynamic case. Finally, we provide a numerical study that explores the benefits of having two flexible parallel servers which can work at either queue versus servers dedicated to each queue. We discuss the results' implications for cross-training workers to perform multiple tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.