Abstract

In this article, we consider the regulator design problem for a class of uncertain multi-input-multioutput (MIMO) nonlinear systems with arbitrary relative degree. The objective is to regulate the output of the nonlinear system to an optimal steady state that solves a constrained optimization problem, without computing the optimal solution in advance. By embedding saddle-point dynamics, both state and output-feedback-based regulators are proposed and the resulting closed-loop systems are modeled in standard singularly perturbed forms. By invoking the singular perturbation analysis, exponential stability is established under some regularity condition. Compared with the existing methods, the proposed regulators can deal with a class of nonlinear systems with uncertainties and arbitrary relative degree. Furthermore, the current results can include some recent works on the distributed optimization problem as special cases. Finally, the effectiveness of the proposed methods is validated through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.