Abstract
In comparison to classical cascade control architecture of DC motors, the state feedback control offers advantages in terms of design complexity, hardware realization and adaptivity. This paper presents a methodic approach to state space control of a DC motor. The state space model identified from experimental data provides the basis for a linear quadratic regulator (LQR) design. The state feedback linear control is augmented with a feedforward control for compensation of Coulomb friction. The controller is successfully applied and the closed loop behavior is evaluated on the experimental testbed under various reference signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.