Abstract

We investigate the design of optimal state estimators for Markovian Jump Linear Systems. We consider that the output observations and the mode observations are affected by delays not necessarily identical. Our objective is to design optimal estimators for the current state, given current and past observations. We provide a solution to this paradigm by giving an optimal recursive estimator for the state, in the minimum mean square sense, and a finitely parameterized recursive scheme for computing the probability mass function of the current mode conditioned on the observed output. We also show that if the output delay is less then the one in observing the mode, then the optimal state estimation becomes nonlinear in the output observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.