Abstract
The paper considers a process controlled by a system of delayed differential equations. Under certain assumptions, a control function is determined such that the zero solution of the system is asymptotically stable and, for an arbitrary solution, the integral quality criterion with infinite upper limit exists and attains its minimum value in a given sense. To solve this problem, Malkin’s approach to ordinary differential systems is extended to delayed functional differential equations, and Lyapunov’s second method is applied. The results are illustrated by examples, and applied to some classes of delayed linear differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.