Abstract

A time dependent model problem with the Riesz or the Riemann-Liouville fractional differential operator of order 1<α<2 is considered. By penalyzing the primary variable of the minimal dissipation Local Discontinuous Galerkin (mdLDG) method with a term of order h1−α and using a von Neumann analysis, stability conditions proportional to hα are derived for the forward Euler method and both fractional operators in one dimensional domains. The CFL condition is numerically studied with respect to the approximation degree and the stabilization parameter. Our analysis and computations carried out using explicit high order strong stability preserving Runge-Kutta schemes reveal that the proposed penalization term is suitable for high order approximations and explicit time advancing schemes when α is close to one. A series of numerical experiments in 1D and 2D problems are presented to validate our theoretical results and those not covered by the theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.