Abstract

This paper investigates the optimal allocation of Spinning Reserve (SR) for power systems in the presence of Renewable Energy Sources (RES) and Electrical Energy Storage (EES) devices. This is done in order to reduce the system’s dependency on thermal generation units and the decrease total daily operational cost. A Security Constrained Unit Commitment (SCUC) model for a typical power system was used, which includes thermal and renewable generation units and EES devices in the form of batteries. In the proposed model, the hourly operation strategy is determined by adopting a predetermined level of SR. In order to optimize SR requirements, the Independent System Operator (ISO) runs the SCUC problem and determines the minimum SR that should be provided by generation units and EES devices. The simulation results illustrate that by optimizing the operation of batteries, the ISO can effectively reduce the required capacity of thermal units. Therefore, optimal SR allocation under RES uncertainty is determined in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call