Abstract
In the paper a method of optimal spindle speed determination for vibration reduction during ball-end milling of flexible details is proposed. In order to reduce vibration level, an original procedure of the spindle speed optimisation, based on the Liao–Young criterion [1], is suggested. As the result, an optimal, constant spindle speed value is determined. For this purpose, non-stationary computational model of machining process is defined. As a result of modelling, a hybrid system is described. This model consists of following subsystems, i.e. stationary model of one-side-supported flexible workpiece (modal subsystem), non-stationary discrete model of ball-end mill (structural subsystem) and conventional contact point between tool and workpiece (connective subsystem). The method requires identification of some natural frequencies of stationary modal subsystem. To determine them, appropriate modal experiments have to be performed on the machine tool, just before machining. Examples of vibration surveillance during cutting process on two high speed milling machines Mikron VCP 600 and Alcera Gambin 120CR are illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.