Abstract

This work is the first to solve the 3-D spin polarization control (3DSPC) problem of atomic ensembles, which controls the spin polarization to achieve arbitrary states with the cooperation of multiphysics fields. First, a novel adaptive dynamic programming (ADP) structure is proposed based on the developed multicritic multiaction neural network (MCMANN) structure with nonquadratic performance functions, as a way to solve the multiplayer nonzero-sum game (MP-NZSG) problem in 3DSPC under the constraints of asymmetric saturation inputs. Then, we utilize the MCMANNs to implement the multicritic multiaction ADP (MCMA-ADP) algorithm, whose convergence is proven by the compression mapping principle. Finally, the MCMA-ADP is deployed in the spin-exchange relaxation-free (SERF) system to provide a set of control laws in 3DSPC that fully exploits the multiphysics fields to achieve arbitrary spin polarization states. Numerical simulations support the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call