Abstract

In Cognitive Radio Wireless Sensor Networks, the licensed spectrum bands are highly dynamic, and their status varies overtime. With the expansion of these networks, regarding the energy constraints and the fact that reallocation of the frequency spectrum is energy-consuming, the problem of controlling the behavior of secondary users in the allocation of the spectrum is of great importance. Providing a method to reduce the number of channel reallocation, which in turn results in reducing energy consumption in such a dynamical network is essential. In this paper, considering the energy constraints, an optimal method for allocating frequency spectrum resources is presented using game theory and Nash equilibrium. By analyzing the activity model of primary users on the frequency spectrum and selecting the appropriate spectrum using the Nash equilibrium, the method reaches the network to a stationary equilibrium point. In these conditions, in addition to reducing interference between primary and secondary users, the number of channel reallocations by cognitive radio users is reduced and thus reduces overall energy consumption in the network and increases its life span.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call