Abstract

A geometrically nonlinear, simply supported beam under the influence of time-dependent external forcing serves as a testbed to demonstrate application of the optimal spatiotemporal reduced order modeling (OPSTROM) framework proposed in Part I of this work. Fully resolved simulations, which are relatively expensive to perform, are used to accurately predict the beam response for a few forcing parameters. More affordable simulations are achieved with a conventional finite-difference scheme by coarsening the computational grid in space and time. Discretization errors are reduced with OPSTROM as subgrid-scale models are designed to account for the underlying space-time statistical structure using principles of mean-square error minimization, conditional expectations and stochastic estimation. When included in the under-resolved simulations, these optimal subgrid-scale models are shown to significantly improve the accuracy of predictions for both periodic and chaotic response types. This improved accuracy is further demonstrated through a set of numerical experiments designed to capture the complex bifurcation behavior of the beam response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.