Abstract

The coherence of a light source is a vital aspect regarding the image quality of holographic contents. Generally, the coherence of the light source is the reason for speckle noise in a holographic display, which degrades the image quality. To reduce the speckle noise, partially coherent light sources such as light-emitting diodes (LED) have been studied. However, if the coherence of the light source is too low, the reconstructed image will blur. Therefore, using a spatial filter to improve the spatial coherence of LEDs has been proposed. In this study, we analyze the effect of the spatial and temporal coherence of the LED light source in a digital holographic display, and the optimal spatial coherence is determined. For this purpose, we devised an optical structure to control the spatial coherence in a holographic display system using a digital micro-mirror device (DMD). Here, the DMD functions as a dynamic spatial filter. By evaluating the change in the holographic image quality according to the spatial filter size, we obtained an optimal spatial filter size of 270 µm in our system. The proposed method is expected to be useful for selecting the optimal coherence of the light source for holographic displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call