Abstract

The increase in installed capacity of renewable energy sources (RES) has a positive effect on the development of smart grids and demand side management (DSM). The reason for this is the intermittent nature of renewable energy, which is directly related to the problem of balancing the production and consumption of power within the power system. By using the DSM, the power consumption in the system comprising RES can be easier adjusted to the power production. The paper proposes an improved concept of DSM through the spatial and temporal DSM. The optimal spatial and temporal DSM aims at determining the power diagram of each individual load bus in order to achieve the optimal state in the whole system. The optimal state of the system can be quantified through the minimum daily energy losses or minimum daily operating costs. A mathematical definition of the optimal spatial and temporal DSM problem is presented as well as the algorithm for its solution. The proposed methodology has been tested by three test networks. The results confirm the overall system performance improvements that include: reduction of energy losses in the system, reduction of the operating costs and the increase of the voltage quality within the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.