Abstract

In this paper we propose simple and efficient algorithms for sorting on incomplete meshes. No hardware redundancy is required and no assumption is made about the availability of a complete submesh. The proposed robust sorting algorithms are very efficient when only a few processors are faulty and degrade gracefully as the number of faults increases. In particular we show that 1-1 sorting (1 key per healthy processor) in row-major or snakelike row-major order can be performed in 3n+o(n) communication and comparison steps on an n/spl times/n incomplete mesh that has an arbitrary pattern of o(/spl radic/n) faulty processors. This is the fastest algorithm reported thus far for sorting in row-major and snakelike row-major orders on faulty meshes and the time complexity is quite close to its lower bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.