Abstract
Synthetic problem of variable structure control (VSC) for linear singular system with input and state time-delays is studied. Firstly, the original system with both input and state time-delays is written into a form without time-delay by a linear transformation. Secondly, the system without time-delay is decomposed into two low dimensional subsystems by a restricted system equivalent decomposed method. Thirdly, the quadratic performance index optimal control technique is introduced to design the optimal sliding mode for the restricted equivalent subsystems. By applying reaching law approach, the selected control law ensures that the solution trajectories of the system reach the switching manifold in finite time and have low chattering in the sliding motion. Finally, a simulation example is given to illustrate the feasibility and validity of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.