Abstract

This paper presents a feedforward and feedback optimal sliding mode control design of active vehicle suspension system for quarter-car model with two-degree-of freedom. In some given conditions, the random road surface input firstly is formulated as the output variables of an exosystem. Then, by regarding some state variables of the suspension system as virtual control, the optimal sliding mode which consists of analytic term and a disturbances compensation term is obtained. The sliding mode control presented ensures the state trajectories reach the sliding surface in finite time and remain on it thereafter. Also, the sliding mode control can effectively attenuate random road surface disturbance. A numerical example is employed to verify the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.