Abstract

The aim of this work is to evaluate the influence of the pier–abutment–deck interaction on the seismic response of bridges isolated by single concave sliding pendulum isolators (friction pendulum system [FPS]) through a comparison with the results of the seismic response of isolated bridges without considering the presence of the rigid abutment (i.e., isolated viaducts). Two different multidegree-of-freedom (mdof) models are properly defined to carry out this comparison. In the both mdof models, five vibrational modes are considered to describe the elastic behavior of the reinforced concrete pier, and an additional degree of freedom is adopted to analyze the response of the infinitely rigid deck isolated by the seismic devices. The FPS isolator behavior is described through a widespread velocity-dependent model. By means of a nondimensional formulation of the motion equations with respect to the seismic intensity, a parametric analysis for several structural properties is performed in order to investigate the differences between the two mdof models in relation to the relevant response parameters. The uncertainty in the seismic input is taken into account by means of a set of natural records with different characteristics. Finally, multivariate nonlinear regression relationships are provided to estimate the optimum values of the sliding friction coefficient able to minimize the pier displacements relative to the ground as a function of the structural properties considering or neglecting the presence of the abutment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.