Abstract

A fundamental problem in green communications and networking is the operation of servers (routers or base stations) with sleeping mechanism to optimize energy-delay tradeoffs. This problem is very challenging when considering realistic bursty (non-Poisson) traffic. We prove for the first time that the optimal structure of such a sleeping mechanism for multiple servers when the arrival of jobs is modeled by a bursty Markov-modulated Poisson process (MMPP). It is shown that the optimal operation, which determines the number of active (or sleeping) servers dynamically, is hysteretic and monotone, and hence, it is a queue-threshold-based policy. This letter settles a conjecture in the literature that the optimal sleeping mechanism for a single server with interrupted Poisson arrival process, which can be treated as a special case of MMPP, is queue-threshold-based. The exact thresholds are given by numerically solving the Markov decision process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.