Abstract

A medium lift-to-drag ratio lunar return vehicle with trim-flaps is presented in this paper. The trajectory optimization design under heat-rate constrain for skip entry lunar return vehicle is analyzed. The optimization problem with a first-order state constraint is introduced. The trajectory applying the Pontryagin maximum principle under the performance of minimum heat is optimized, and the optimal expression of lift coefficient is derived. The simulation studies show that this research method can decrease the heat-rate effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.