Abstract

Power system restoration comprises of three stages, i.e., the preparation stage, system restoration stage, and load restoration stage. This paper addresses the first two stages by a new skeleton-network restoration strategy considering the generator start-up sequence (GSUS) and load pickup. The proposed restoration strategy consists of three mathematical models: 1) GSUS model; 2) transmission line restoration (TLR) model; and 3) load pickup (LDP) model. The GSUS model aims to maximize the overall system generated energy considering the actual power system topology. The TLR model is to attain an optimal skeleton-network by identifying the restoration sequence of transmission lines. Critical loads are restored to keep the voltage within a specified respective threshold, and the load amounts are optimized in the LDP model. The proposed GSUS model and TLR model are both solved by the branch-and-bound method, while the LDR model is solved by the interior point method as well as the branch-and-cut method. Finally, the performance of the proposed method is demonstrated by two case studies on the New England 10-unit 39-bus system and an actual power system in Guangdong, China, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.