Abstract

Due to the depletion of traditional energy resources, emissions of greenhouse gases, climate change, etc., renewable energy resources (RER) based power generation is becoming the main source of the present and future power sector. The major RERs, including solar, wind, and small hydro, may provide reliable and sustainable solutions in the smart grid environment. Solar and wind energy-based power generation is more prevalent but varies in nature and is not even very predictable very efficiently. Therefore, it has become necessary to integrate two or more RER and develop a hybrid energy system (HES). The HESs provide a cost-effective and reliable power supply with reduced and/or almost negligible greenhouse gas emissions as well. Due to economic and power reliability concerns, the optimal sizing of components is necessary for the development of an optimum HES. In recent years, metaheuristic evolutionary algorithms have been widely used for optimal sizing of HES. Harris hawk’s optimizer (HHO) is a recently devised metaheuristics search method that has the ability to discover global minima and maxima. However, due to its weak exploitation capacity, the basic HHO algorithm’s local search is pretty slow and has a slow rate of convergence. Thus, to boost the exploitation phase of HHO, a new approach, random exploratory search centered Harris hawk’s optimizer (hHHO-ES), has been developed in the present work for optimal sizing of HES. The suggested approach is validated and compared to existing optimization approaches for a variety of well-known benchmark functions, including unimodal, multimodal, and fixed dimensions. Following this, it is used to develop HES, which will be capable of providing power to remote areas where grid supply is scarce. The objective function is formulated using net present cost (NPC) as a prime function under a set of constraints such as bounds of system components and reliability. The obtained results are compared with those from harmony search (HS) and particle swarm optimization (PSO) and found to be better.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call