Abstract

Distribution network planning identifies the least cost network investment that satisfies load growth requirements without violating any system and operational constraints. Power injections from distributed generation change network power flows, modifying energy losses. Determining appropriate location and optimal size of distributed generation with respect to network configuration and load distribution in the feeder is main challenge in the changing regulatory and economic scenarios. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance; reliability, and efficiency. In this article, the multi-location distributed generation placement problem aims to minimize the total active power loss of radial distribution networks using a genetic algorithm based solution algorithm. This technical benefit of energy savings due to the reduction in active power loss can also be translated into economic benefits. The loss sensitivity to the change in active power injection is used in selecting candidate location(s) for installation of distributed generation devices. A comparison of the results for loss reduction and savings with other reported methods show the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call