Abstract

In this paper, optimal sizing of a photovoltaic (PV) pumping system with a water storage tank (WST) is developed to meet the water demand to minimize the life cycle cost (LCC) and satisfy the probability of interrupted water (pIW) constraint considering real region data. The component sizing, including the PV resources and the WST, is determined optimally based on LCC and pIW using a new meta-heuristic method named enhanced artificial rabbits optimization (EARO) via a nonlinear inertia weight reduction strategy to overcome the premature convergence of its conventional algorithm. The WST is sized optimally regarding the lack of irradiation and inaccessibility of the pumping system so that it is able to improve the water supply reliability. The LCC for water extraction heights of 5 and 10 m is obtained at 0.2955 M$ and 0.2993 M$, respectively, and the pIW in these two scenarios is calculated as zero, which means the complete and reliable supply of the water demand of the customers using the proposed methodology based on the EARO. Also, the results demonstrated the superior performance of EARO in comparison with artificial rabbits optimization (ARO) and particle swarm optimization (PSO); these methods have supplied customers’ water demands with higher costs and lower reliability than the proposed EARO method. Also, during the sensitivity analysis, the results showed that changes in the irradiance and height of the water extraction have a considerable effect on the cost and ability to meet customer demand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call