Abstract

Hybrid renewable energy microgrid has become an attractive solution to electrify urban areas. This research proposes a microgrid design problem including photovoltaic (PV) arrays, wind turbine, diesel, and batteries for which Harris hawk optimization (HHO), a metaheuristic technique, is applied. Based on a long-term techno-economic assessment, the HHO approach is used to determine the best hybrid microgrid size for a community in Saudi Arabia’s northern region. The efficacy of HHO is investigated, and its performance was compared with seven metaheuristic techniques, grasshopper optimization algorithm (GOA), cuckoo search optimizer (CSO), genetic algorithm (GA), Big Bang–Big Crunch (BBBC), coyote optimizer, crow search, and butterfly optimization algorithm (BOA), to attain the HRE microgrid optimal sizing based on annualized system cost (ASC) reduction. Some benchmarks (optimum and worst solutions, mean, median, standard deviation, and rate of convergence) are used to distinguish and analyze the performance of these eight metaheuristic-based approaches. The HHO surpassed the other seven metaheuristic techniques in achieving the best HRE microgrid solution with the lowest ASC (USD 149229.9) followed by GOA (USD 149380.5) and CSO (USD 149382.5). The findings revealed that the HHO, GOA, CSO, and coyote have acceptable performance in terms of capturing the global solution and the speed of convergence, with only minimal oscillations. The BBBC, crow search, GA, and BA, on the other hand, have unacceptably poor performance, trapping to the local solution, oscillations, and a long convergence time. In terms of optimal solution and convergence rate, the BBBC and GA both perform poorly when compared to the other metaheuristic techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.