Abstract
• Critical review on ESS planning covering ESS selection, modelling and algorithms. • Thorough discussion on requirements of ESS techniques in different sub-systems. • Systematic methodology of problem formulation for optimal ESS planning. • Comparison of algorithms focusing on optimization and uncertainty management. • Research directions on ESS planning considering demands in future grid. Energy storage system (ESS) has been expected to be a viable solution which can provide diverse benefits to different power system stakeholders, including generation side, transmission network (TN), distribution network (DN) and off-grid microgrid. Prudent ESS allocation in power grids determines satisfactory performance of ESS applications. Optimal sizing and placement of ESS are crucial for power quality improvement of DN and transmission system protection setting. To solve this issue, considerable researches have been done either in modelling or algorithms. However, various options and complex characteristics in different sub-systems make it difficult to appraise a specific method for an ESS application, while the existing reviews only focus on ESS applications in DN. This paper provides a critical one-stop handbook related to one hundred and four methods in six categories covering all kinds of networks and tailored applications. Meanwhile, a systematic methodology is presented with an extensive latest literature review, including ESS selection, evaluation criteria, modelling and solution methods. Particularly, different technical requirements and modelling methods of different sub-systems are outlined. Besides, pros and cons of optimization methods are thoroughly analysed and compared to reveal state-of-the-art studies. Finally, key points in optimal ESS sizing and placement are concluded along with recommendations for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.