Abstract

This article developed a multi-period linear programming model to identify the optimal size of fingerling to understock to maximize multi-period returns on a catfish grow-out farm. Grow-out production alternatives included understocking three different sizes (7.6 cm, 12.7 cm, and 17.8 cm) of fingerlings in multiple-batch production at 15,000 fingerlings per hectare. Fingerlings were produced either with or without thinning at different stocking densities. Results showed that the optimal size of fingerling to understock was 12.7 cm. On-farm production of fingerlings was optimal across all farm sizes but the fingerling production technique selected varied with farm size. Models of larger farm sizes indicated that it is optimal to thin fingerlings, while for smaller farm sizes, producing fingerlings without thinning was optimal. When farm size was treated as an endogenous variable in the farmer's profit-maximizing decisions, the optimal size of a catfish farm was 404 water-ha. Sensitivity analyses suggested that net returns were sensitive to changes in the key parameters of the model (such as interest rates, feed conversion ratios, survival rates, catfish prices, harvesting costs, and the availability of operating capital), whereas the optimal size of fingerlings to understock was robust to variations in the model's parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.