Abstract

Pore size is an essential factor in controlling gas sorption in porous separation media. Overlap of the potential energy surface (PES) of CO2 interacting with a cylindrical pore wall can be used to tune gas sorption inside a porous material, but how such overlap can benefit post-combustion CO2 capture has not been fully addressed from a computational perspective. Here we use van der Waals density functional (vdW-DF) theory to assess the overlap of PES of CO2 inside cylindrical pores as represented by carbon nanotubes (CNTs) of different diameters. Then we employ grand-canonical Monte Carlo simulations to obtain the adsorption capacity and selectivity of a CO2/N2 mixture with a CO2 partial pressure of 0.15 atm at room temperature. We find that the maximum PES overlap and maximum amount of CO2 adsorbed are both achieved at a CNT diameter or cylindrical pore size of 7.8 A, which corresponds to an accessible pore size of 4.4 A. Further investigation of N2 adsorption corroborates the idea of PES overlap. GCMC ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.