Abstract

ABSTRACT Geometrical increase in power demand and high load density at the distribution ends of modern power systems have key consequential problems of high power loss and poor voltage profile, as a result of which the integrity of radial distribution networks to faithfully account for the energy received from transmission subsystems has been seriously undermined. This challenge is, however, being overcome by placement of shunt capacitors to supply the reactive power required for compensation; hence, optimal sitting and sizing of compensators has been intensively researched. As efficient as the use of meta-heuristic algorithms for joint optimal placement and sizing of the shunt capacitors are, employment of the approach on the Nigerian radial distribution system (RDS) is not yet popular as most of the earlier works reported rather used analytical and numerical programming approaches. In this study, therefore, the use of firefly algorithm (FA) on a Nigerian 11-kV feeder is presented as an approach to optimally site and size shunt capacitor for real power loss reduction on such network. Backward-forward sweep load flow technique, with voltage stability index (VSI), is employed to find the candidate buses where the shunt capacitors would be installed, then FA is employed to determine the optimal size required. This approach is implemented on a 34-bus 11-kV feeder and it is found out that the system’s real power loss reduced from 762.6419 to 597.7486 kW, while the minimum bus voltage magnitude was raised from 0.8295 to 0.8456 p.u. and the minimum system VSI was improved from 0.4741 to 0.5121 p.u. Based on these results, the proposed approach is, therefore, considered a promising technique for sitting and sizing shunt capacitor optimally in real practical RDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call