Abstract
In this paper, we present the optimization of the production of hydrogen and/or liquid fuels from glycerol. We propose a limited superstructure embedding a number of alternative technologies. Glycerol is first reformed using either aqueous phase reforming, steam reforming, or autoreforming. The gas obtained is cleaned, and its H2 to CO ratio is adjusted (bypass, PSA, and/or water gas shift). Next, the removal of CO2 is performed by means of PSA, and the syngas is fed to the Fischer–Tropsch reactor. The products obtained are separated while the heavy fraction is hydrocracked. The optimization of the system is formulated as a mixed integer nonlinear programming (MINLP) that is solved first for the optimal production of hydrogen alone and next for the simultaneous production of liquid fuels and hydrogen. The production of hydrogen is competitive with that obtained from switchgrass as long as the glycerol price is below $0.05/lb ($0.110/kg) using aqueous phase reforming. For the liquid fuels to be attractive,...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.