Abstract

We study optimal liquidation in the presence of linear temporary and transient price impact along with taking into account a general price predicting finite-variation signal. We formulate this problem as minimization of a cost-risk functional over a class of absolutely continuous and signal-adaptive strategies. The stochastic control problem is solved by following a probabilistic and convex analytic approach. We show that the optimal trading strategy is given by a system of four coupled forward-backward SDEs, which can be solved explicitly. Our results reveal how the induced transient price distortion provides together with the predictive signal an additional predictor about future price changes. As a consequence, the optimal signal-adaptive trading rate trades off exploiting the predictive signal against incurring the transient displacement of the execution price from its unaffected level. This answers an open question from [C. A. Lehalle and E. Neuman, Finance Stoch., 23 (2019), pp. 275--311] as we show how to derive the unique optimal signal-adaptive liquidation strategy when price impact is not only temporary but also transient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call