Abstract

A limiting performance of shock isolation is studied for an object modeled by two rigid bodies connected by a viscoelastic element with a linear characteristic. The object is attached to a movable base by means of a shock isolator, which is regarded as a device that produces a control force between the base and the object. The base and the object move along the same straight line. The base is subject to an external shock excitation that is characterized by the time history of the acceleration of the base. A control law is defined for the shock isolator to minimize the maximum magnitude of the displacement of the object relative to the base, provided that the force of interaction between the components of the object does not exceed a prescribed value. An algorithm for constructing the exact solution of the problem under certain assumptions is presented. A technique for constructing an approximate solution for an object having high stiffness is described. The optimal control is shown to have impulse components. Examples are given. The two-component model considered in the paper is known to have been utilized to describe the mechanical response of a human body to a shock load along the spine or from thorax to back. Therefore, the problem under consideration can be regarded as a benchmark optimal control problem for a system that protects from injuries cased by shock loads. Solution of such problems is highly topical for development of safety systems for vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.