Abstract

Governing equations of a compressed rotating rod with clamped–elastically clamped (hinged with a torsional spring) boundary conditions is derived. It is shown that the multiplicity of an eigenvalue of this system can be at most equal to two. The optimality conditions, via Pontryagin’s maximum principle, are derived in the case of bimodal optimization. When these conditions are used the problem of determining the optimal cross-sectional area function is reduced to the solution of a nonlinear boundary value problem. The problem treated here generalizes our earlier results presented in Atanackovic, 1997, Stability Theory of Elastic Rods, World Scientific, River Edge, NJ. The optimal shape of a rod is determined by numerical integration for several values of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.